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Size and time dependence of the elastic constants of a two-dimensional solid near melting
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By using molecular dynamics simulations, the behavior of the Lamé elastic constants of a two-
dimensional (repulsive Lennard-Jones potential) solid near melting has been studied over a wide range of
systems and very long evolution times. The shear modulus p is found to vary logarithmically with sys-
tem size until some critical value of the evolution time is reached for sufficiently large systems. The
shear modulus then vanishes, leaving the thermodynamic properties, T and p, invariant. This result pro-
vides experimental evidence that the system melts as its size is increased.

PACS number(s): 68.10.Jy, 05.70.Fh, 64.70.Kb

Over the last 10-15 years, the two-dimensional (2D)
solid near (or at) melting has been widely studied from
many different, and often controversial, points of view
[1]. The main point of discussion has been the determina-
tion of the transition’s order, whether first [2,3] or second
[4,5]. The difference is the way in which the liquid sys-
tem is reached, whether abruptly from the solid (first or-
der), or continuously (second order) with a “critical slow-
ing down.” A continuous transition is associated with
long-range correlations which are suppressed in small
computer models. Hence the way to investigate the melt-
ing transition is by analyzing size-dependence properties
of a 2D solid near or at melting. For one thing, surpris-
ingly few studies of size dependence have been performed
for the melting of 2D atomic systems, but there have
been indications of the existence of strong finite-size
effects [6] and Van der Waals’ loops [7]. When a weak
first-order transition had become almost universally ac-
cepted, further studies of the size dependence of various
physical quantities cast doubt on this assumption because
of the existence of strong finite-size effects, as Toxvaerd
[8], and Udink and Van der Elsken [9] have pointed out.
For another thing, there has been very little detailed ex-
amination of finite-time effects, and, in the transition re-
gion, the possibility always exists of relaxation times
longer than the longest run, as shown by Novaco and
Shea [10], who interpreted this effect as evidence of “crit-
ical slowing down” and thus of a continuous transition.
These results again give timeliness to the problem, and
the debate continues.

In light of these two considerations, the most interest-
ing physical property to study is the elasticity of a 2D
solid near melting, through calculations of the Lamé
shear modulus u. Because, in principle, p should vary
logarithmically with system size [8,11], and its instan-
taneous value fluctuate [12], the calculations have to be
performed over a wide range of large systems and for
very long intervals of time. Previous results have been
obtained for small systems (from 64 to nearly 16 500 par-
ticles) and “short” evolution times (10° time steps for the
larger system) which do not resolve the problem of the
order transition in 2D. The aim of the present work,
therefore, was to obtain the shear modulus, taking into
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account the combination of these two factors (size depen-
dence and time evolution) in order to obtain results
which may be meaningfully compared with earlier work,
especially Ref. [8].

The shear modulus p was obtained directly by consid-
ering the stress tensor in a system with modified bound-
ary conditions and applying a small homogeneous shear
strain, as described by Broughton, Gilmer, and Weeks
[13]. If small strains s are applied to the system and the
resulting stress P, ,(s) is measured in a long molecular-
dynamics run, it is possible to obtain a linear relation be-
tween stress and strain in the form

P (s)=sp+O(s?), (1

where the pressure tensor is given by

kTp X /1 (x; —x;)y;i —y;)

P (s=XIp (—U’(r~)—’—-’—> @)
> N igj kT Y rij s

in which ( ), is the normalized ensemble average in the

modified system with the given strain s.

First of all, one has to be sure that the strain intro-
duced into a system to measure the elastic constants does
not exceed the linear regime, in particular very close to
the melting zone where the correlation length may be-
come very long. Moreover, as in principle the region of
linearity may be a function of the wavelength of the
shear, which presumably increases with system size, one
has to determine the extent of this region for each system
under study. Indeed, because there appears to be such
strong size dependence, it is not unlikely that the linear
region may shrink as the system size is increased, espe-
cially near the melting transition. Figure 1 shows this
behavior: one can see that there is a linear regime for one
of the larger systems studied, of N=7744 particles, and
that this large system linear regime has shrunk with
respect to the linear regime found for N=64 in Ref. 8 at
the same conditions of temperature, density, and number
of time steps. The value 0.01 chosen for the strain, for all
the systems studied, was well inside the linear regime of
strain at temperature k7 /e =1 for both densities studied.
Here k is Boltzmann’s constant, and € the energy unit of
the repulsive Lennard-Jones potential U(r;;). Table I
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FIG. 1. The stress pxyr,f, /€ in a N=7744-particle system at
the density pr2 =1.18. The points for the strain were obtained
for 10° time steps.

lists the systems selected for study. They cover a wide
range of particle numbers from N=64 up to 40000, at
two densities very close to the melting zone [14],
prl =1.17 and 1.18, where r,, is the distance at which the
Lennard-Jones potential has its minimum (the potential
cutoff). These systems cover and go beyond the systems
used by Toxvaerd [8], Udink and Van der Elsken [9], and
Zollweg, Chester, and Leung [11]. The radius for the
neighbor table was ry =1.4r,, =1.570, and the molecu-
lar dynamics time steps unit & was 0.005(moa?/¢)!/2. The
total number of time steps is denoted by N,, and N; <N,
is an intermediate number of time steps. Figure 2 shows
the shear modulus g as a function of In N for the two
densities. The uncertainties are the root-mean-square
(rms) deviations from the means and are obtained from
independent subsets. The time evolution of the systems is
given by the values N; in Table I. The seven points of
each straight line show a clearly logarithmic size depen-
dence when the systems have evolved these N; time steps,
which is much more time than any previous simulation
[1]. This result is in concordance with the Toxvaerd
[8,15] and Zollweg, Chester, and Leung [11] suggestions,
but not with the results of Hoover, Combs, and Masso-
brio [16] which predict a shear dependence proportional
to the inverse of the size of the system. However, if the
systems are left to evolve longer, the smaller systems do
not suffer any change in their shear modulus, while for

TABLE 1. Size of the systems and their evolution times at
the two densities considered.

N;(10° h) N, (10*h) N; (10° h) N, (10° h)

N  (pri=1.17) (pri=117) (pri=1.18) (pri=1.18)
64 1000 2000 1000 2000
256 700 1000 800 1000
1024 700 1000 800 1000
3136 700 1000 800 1000
7744 250 700 700 900
18 496 160 360 460 680
40000 100 475 170 490

FIG. 2. Shear modulus pr? /e as a function of In N. The
upper line corresponds to prZ=1.18, and the lower line to
prl=1.17. The evolution times of the systems are the N,’s list-
ed in Table I.

the larger systems the value of u drops abruptly, as Fig. 3
clearly shows. It is very interesting to note that for the
density closer to the melting zone, the N=7744 system is
not capable of maintaining the p value constant, while for
the upper density it does. For the larger systems, neither
density can avoid the fall of the shear modulus. This fact
is seen better if the time evolution of the shear modulus is
studied. Figure 4 shows three different time evolutions of
the first system whose p value drops (N=7744 at
pr2 =1.17). As one can see, the three behaviors are qual-
itatively the same. First the systems start by fluctuating
around the mean, but after 25X10% 12.5X10*% and
10X 10* h, according to each case, u falls abruptly and
begins to fluctuate around values close to zero. The first
system whose p value falls at pr’2 =1.18 is N =18496,
but after a very long evolution time (460000 h) during
which the shear modulus stays almost constant, as can be
seen in Fig. 5 (curve 1). Comparing the same system at
pr2 =1.17 (curve 4), the sharp decline to zero occurs
sooner (after 160000 h) as a consequence of the proximity
to the melting zone. The results for the very large system
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FIG. 3. The same as Fig. 2, but for the total evolution time
N,.
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FIG. 4. Three different temporal evolutions of the shear
modulus for N=7744 at pr}, =1.17%, =1.17.

of N =40000 present similar behavior, but the resistance
against the value of u falling is considerably less. In this
case, for pr’ =1.18 (curve 2) the decline is in two stages:
after 170000 h the shear modulus drops to about the
value 10, which is maintained for about the following
150000 h, with the subsequent drop to smaller values
presenting large fluctuations. For pr2 =1.17 (curve 3)
the behavior is quite clear cut: the decay occurs sooner
(after 10° h) and tends to zero faster than before,
representative of the general behavior that one may ex-
pect for systems larger than N =40 000 particles.

To continue with the study of elasticity in the solid,
once the shear modulus has been calculated, it is a
straightforward matter to calculate the other elastic con-
stant A through the isothermal compressibility [13], i.e.,

p

pti=p 3

) 3)
T

where the value of the compressibility can be easily ob-
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FIG. 5. Temporal evolution of the shear modulus for the two
largest systems at the two densities: 1 (N =18496, pr2 =1.18),
2 (N =40000, prZ=1.18), 3 (N=40000, pr2=1.17), and 4
(N =18496, prl =1.17).
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TABLE II. Compressibility factor obtained from the pres-
sure results at the two densities considered. The standard devia-
tion is 0. The calculations were performed for the total number
of time steps N, given in Table I.

pto pro P

N (pr2=1.17) (pri=1.18) ¥p |,
64 13.02+0.01 13.60+0.01 58.0
256 13.154+0.005 13.735+0.006 58.1
1024 13.19+0.01 13.771+0.003 57.7
3136 13.23+0.03 13.780+0.004 55.0
7744 13.27+0.03 13.80+0.02 53.0
18 496 13.24+0.03 13.80+0.01 56.0
40000 13.2540.02 13.80+0.01 55.0

tained by computing the pressure p at two closely spaced
densities. Table II lists the pressures at the two densities
of the study and the values derived for the compressibili-
ty for the total evolution time N, of the systems, and
shows that the fall in x does not affect the calculated
values of thermodynamic properties such as temperature
(not listed in the table) and pressure. The pressure shows
a very weak increase with increasing size, as Toxvaerd
[14] noted for his smaller systems, until reaching a con-
stant value for the larger systems. The compressibility
factor, however, tends to fluctuate around a mean value
that is almost independent of N. (For smaller systems,
Zollweg, Chester, and Leung [11] found a weak decrease
of compressibility with size for an r 2 potential and
prl =1.28) As a consequence, the size dependence of A
is logarithmic and determined by p as in Eq. (3).

An appropriate combination of the Lamé elastic modu-
li o and A forms the well-known expression for the tri-
angular lattice [13]:

k=>B_p @
V8P L
utA

In the Kosterlitz-Thouless-Halperin-Nelson-Young

(KTHNY) theory [17], K shows a universal temperature
dependence as melting is approach, first declining to the
value 167 and then dropping to zero at melting. The sta-
tistical errors in the determination of K are considered to
be of the order of 10-20 % near melting [1]. Figure 6
shows this logarithmic dependence of K when, as in Fig.
2, N; time steps (Table I) are considered, but this
behavior is broken from N=7744 at pr2 =1.17 and from
N =18496 at pr’ =1.18 when the whole evolution time
N, is used. The interesting thing here is that the drop in
K is neither sharply to zero, nor at a value of K =16,
nor for such very large systems as the KTHNY theory
predicts. On the contrary, the fall starts when K reaches
a value of 68-73, it is less sharp, and the systems are
much smaller than expected.

The results of Toxvaerd [8,15] for very small systems
of N=64, 256, and 1024, predict, by extrapolating their
logarithmic dependence of K, a value of K =55 for
N =40000 at pr2 =1.17, but this estimate is uncertain
(Hoover [16] gives N =10'!). Extrapolating the calcula-
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FIG. 6. The same as Fig. 2 but for K. The fit to a straight

line is for the N; time steps listed in Table I, and the dashed line
corresponds to the total number of time steps N,.
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tions of the present work, the theoretical estimate of
K =55 should be reached for N =7 X 10'! particles. This
large discrepancy is due to the fact that the slope of K
here is smaller and closer to that of Zollweg, Chester, and
Leung [11] than to that of Toxvaerd [8]. Nevertheless,
these theoretical predictions are not very meaningful be-
cause the very important point here is that the solid sys-
tem near melting gives up its resistance to shear much
earlier than the KTHNY theory predicted [17]. Physi-
cally, this means that the system is in a nonequilibrium
state caused by the long-wavelength phonons allowed in
the N=7744 system. The system can, however, still
resist shear at a higher density pr2 =1.18, but when the
system at this density is enlarged to N =18 496 particles
this density also gives up resisting shear, and so on.
What one should expect is just that when the shear
modulus (and consequently K) drops to about zero, all
other thermodynamic properties are left unaffected.
These predictions by Toxvaerd, repeated more recently
by Zollweg, Chester, and Leung [11], are verified in the

present work. The fact that the system cannot resist
shear makes it look like a pseudosolid with local order,
and interesting in this context is the mechanics by which
it yields to shear. Is it by a layerwise parallel shift, or by
creating disclinations, etc.? Swope and Andersen [18] re-
cently reported evidence of a non-first-order phase transi-
tion in 2D systems. Doubtless, the debate is still alive.

Finally, we give two technical details about the calcula-
tions. Toxvaerd’s results for the shear modulus in Ref.
[8] where imprecise not only because of the small size of
the systems and the short evolution times used, but also
because he used the traditional molecular dynamics
method which simulates the microcanonical ensemble.
This means that the temperature of the system fluctuates
during the simulation, leading to large uncertainties in
the calculations of u. The results presented here were ob-
tained with a very accurate molecular dynamics
isothermal-isochoric algorithm which fixes the tempera-
ture of the systems perfectly to the desired value perfect-
ly, and makes the uncertainty in the pressure consider-
ably smaller, giving a shear modulus with more precision.
This method, originally performed by Nosé [19] and
Hoover [20], has been tested previously near the phase
transition [21], and recently improved [22].

Simulating such large systems over such long times was
possible due to a computer technique called the CNT
method [23], which combines the cell method with the
traditional neighbor table method (with N2 time depen-
dence) to give an N time dependence, with the consequent
huge saving of CPU time and the additional advantage
that it does not essentially require the use of the new gen-
eration computers, such as the CM, etc. Instead, these
calculations were performed on a modest CONVEX 210.
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